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Let W, (x):=exp(—|x}*), xeR, x>0. For a<1, we obtain upper and lower
bounds for the Christoffel functions for the weight W} over the whole Mhaskar-
Rahmanov-Saff interval, and deduce inequalities for spacing of zeros of orthogonal
polynomials for W2, Then we deduce bounds for orthogonal polynomials for the
weight W2, These results complement recent results of the authors treating a large
class of weights including W2 a>1. 11995 Academic Press, Inc.

2>

1. INTRODUCTION AND RESULTS

Let W?:=e" 29, where Q: R— R is even, continuous, and of “smooth
polynomial growth” at infinity. Such a weight is often called a Freud weight
[19], and perhaps the archetypal example is

W,(x) =exp(—|x|*), o> 0. (1.1)
Corresponding to the weight W2, we can define orthonormal polynomials
pn('\’):=pn(W2’x)=))nxn+”" "I'In>0’n'>/0’

satisfying
J 7‘ pn( sz X) pm( WZ’ x) Wz(x) dx = émna m, n ; 0

* Research completed while the author was visiting Witwatersrand University.

219
0021-9045/95 $6.00

Copyright . 1995 by Academic Press, Inc
All rights of reproduction in any form reserved



220 LEVIN AND LUBINSKY

Recently, the authors [10] established bounds for p,(W?, x) for a class
of Freud weights that includes W2, «> 1. The purpose of this paper is to
establish complementary resuits for the case « < 1. Our methods are similar
to those in [10], but additional technical difficulties arise. Consequently,
we have decided to restrict ourselves to the weights W2, though the
methods can treat more general Freud weights.

Here, as in [10], estimates for the Christoffel function play a crucial role.

Recall that if 2, denotes the class of polynomials of degree <, then

L (W2 x) = inf [ (PW)(1)di/P?(x) (12)

Ped
in l

=1/ Y p2(W?x). (1.3)
ij=0

See [19] for a survey of the importance of Christoffel functions.
To state our results, we need the Mhaskar-Rahmanov-Saff number a,
['16, 177, the positive root of the equation

1 s
MZ%J. a“tQ'(au[)dI/\/ 1__[2’ u>0. (14)
0

For the weight W, (x), we have Q(x)=x]|* and
a,(Wy=n/i)"  nzl, (1.5)

where [16]
A= C(@)/[2* 21(2/2)*]) (1.6)

Throughout C, C,, C,, ... denote positive constants independent of n, x,
and Pe#, We use ~ in the following sense: If {b,}7_, and {c,}_, are
sequences of non-zero real numbers, we write

b ~c¢

if there exist C, C,> 0 such that
Ci<b,/c,<Cy, nzl.

Similar notation is used for functions and sequences of functions.
Given O0<a<1, and n>1, we define a function A,(x):=4,(x, x) as
follows: For [x| <a,/2, set

it a<l
An(x) = {1/10g[7m/(1+|x|)], a=1 (17
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and for |x| =a,/2,
Ay (x)=n""""max{n=?3 1 —|x|/a,} "2 (1.8)

We remark that the breakpoint a,/2 is just for definiteness: We could have

used oa, for any 0 <o < 1, as our breakpoint, since the ratio of the right-

hand sides of (1.7), (1.8)~ I in [da,, ¢a, ] for any fixed 0 <d<e< 1.
Following is our result for Christoffel functions:

THEOREM 1.1. Let O<a <1 and L>0. Then uniformly for n=1 and
x| €a (1 +Ln~%3), we have

(W2, X) ~ A, (x) W2(x). (1.9)
Moreover, there exists C>0 such that for nz 1 and all xe R,
A (W2, x)=CA,(x) Wi(x). (1.10)

Remarks. (a) The lower bound (1.10) was proved in [10]. We use
the method of [10] to prove the upper bound implicit in (1.9) for
Ix| € [ea,,a,(1 +Ln~*%)], any 0 <e< 1, but that method breaks down for
|x] €ea,. To prove the upper bounds for |x| < ea,, we use the method that
Freud, Giroux, and Rahman employed for x=1 in [7]: They established
(1.9) for x=1 and the range |x| <ea,, some ¢>0.

(b} It is a well known consequence [2, 5, 20] of the indeterminacy of
the moment problem for «<1 that 4,(W2, x) does not decay to 0 as
n— o, or equivalently

K.(x):=Y p2(W2 x)<ox.
j=0
In fact, Theorem 1.1 implies that
K (x) W2(x)~(1+|x])* ", uniformly for xe R. (1.11)
The order and type of the entire function K, (x) have been investigated by
various authors; see, for example, [2, 3].
We can deduce results on the zeros of the orthonormal polynomial

p,(W?2, x), which we order as

S KX S Xy < L Xy < Xy < 0.

640:80,2-7
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COROLLARY 1.2. Let O<a< 1. Then there exists C, such that

(a) Fornz=l,
‘xln/an_ll gCln'fZ;“G. (112)
(b) Uniformly for n=22 and 2< j<n—1,

x'~\.n_‘ri+l.n~An('r_in)' (113)

2

Remarks. (a) For a a positive even integer, sharper asymptotics are
known for x,, [14].
(b) We can probably deduce a similar result for x, —x;,, with
additional work; see [4].

CoROLLARY 1.3. Let O<a<1 and £¢€(0,1). Then uniformly for n=1
and j such that |x,,| > ¢a,,

n
n P (W x)l W (x0)
~pa (W2 x,) WiX,,)

~n " max{n ¥ 1—|x,l/a,}"" (1.14)

The reason for our restriction |x| 2 ex,, is that we cannot obtain correct
upper bounds for a certain function A4,(x) for |x| <ea,; see Section 6.

CorOLLARY 14, Let O<a<1 and ¢€(0,1). Then for n>=1 and |x|e
[San’ an]’

P (W2, )| W (x)<Cn " max{n 2 1 —|x|/a,} " (L15)

Remarks. (a) Again, the restrictions on the range of x in (1.15) arise
from our inability to investigate the behaviour of a certain function. Using
the asymptotics in [11, pp. 187, 209] for weights that are the reciprocals
of an entire function, and Korous type identities, we can obtain “correct”
upper bounds for p,(W32, x) for |x| > a,n 2% any 6> 0. However, this
involves substantial effort, and does not provide bounds for the complete
range, so is omitted.

{b) E. A. Rahmanov [22] has informed the authors that he believes
asymptotics can be proved for p,(W?2 x) in [—oa,, ca,], any fixed
g e (0, 1). Such asymptotics will imply

“pn(Wis) Wa”Lm[—oa,,.au,,]scan ”23 nZI
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Together with Corollary 1.4, the methods in Section 6 or in [10] will give
lpa (W3, x) W)~ |xi/a, |, my~a, % nz1,
and
lpa (W YWl my~a, 20 nz L

At least for x =1, we can prove this:

COROLLARY 1.5
NP (Wi ) Wil ~n 12TYS, nzl (1.16)

This paper is organised as follows: In Section 2, we discretise a potential,
and hence estimate a certain L, Christoffel function. In Section 3,
we obtain upper bounds for A,(W2 x) for the range |x|e€
[ea,, a, (1 + Ln~**)] and in Section 4, we obtain upper bounds for the
range |x| < ea,, thereby completing the proof of Theorem 1.1. In Section §,
we prove Corollary 1.2 on the zeros of p, (W2, x), and in Section 6, we
prove Corollaries 1.3-1.5.

2. THE SUP-NORM CHRISTOFFEL. FUNCTIONS

Given a weight W: R - R, we let

i (W.x)i= inf [PWI,, &/IPI(x), n>1xeR  (21)

Pedy

denote the sup-norm Christoffel function for W. In this section, we obtain
the following result, which will be applied in the next section to derive
upper bounds for ordinary Christoffel functions:

THEOREM 2.1. Let >0 and L>0. For n= 1, set
Fo={x|xI<a,(1+ Ln )}, (2.2)
where a,=a,(W,) is defined by (1.5) and (1.6). Then

A o (Wo, x)~ W, (x), (2.3)

Ay

uniformly for xe ¢ and nz= 1.

Note that for a> 1, Theorem 2.1 is a special case of Theorem 1.6 in
[10], so we concentrate on the case a< 1. Obviously A, . (W,, x)=
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W,.(x). Thus it suffices to construct, for any x,€_#, a polynomial
S,=S, . €%, such that

1S, Wolle, < Cis (2.4)
while
(S, W) xo)l 2 C, (2.5)

where C, and C, depend on a, L, but not on n or x,eJ, (We may use
S,e 2, instead of S, e 2, _,, since a, _,/a,=1+0(n '), by (1.5).)

First let us reformulate our task. We need some potential theory related
to W,:

LEMMA 2.2. Let a>0.
(a) Define for xe [ —1, 1\{0},

jl I (2.6)

3
0 \/l-s‘ s2—x?

2
plx)i==ai, "
T
Then
§
u(x)>0 in [—1,17:{0}  and j atydi=1.  (2.7)
1
(b) Define for zeC,
1
U(z)::_[ Hog |z~ il (1) di = i 12| + 1, (2.8)

where

7u:=g/1"'fl dr+log 2.
oot e J1-12

Then for xe [ —1, 1],
U(x)=0;

and

exp(—n fl log |x —t} u(r) dt) =W (a,x)Yexp(ny,). (2.10)
1

Furthermore,

U(x)<0, xeR, (2.11})
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and

nU(x)|<C, xe g, (2.12)

where §#, is defined by (2.2) and C = C(L).

Proof. These statements are well known and appear (in various forms)
in [12, 16, 21]. For our purposes, a convenient reference is Lemma 7.1 in
(107, applied in the special case Q(x) :=|x|* and R=a, = (n/4,)}"* (Note
that there is a missing minus sign in the exponential term in (7.11) in

(ton. 1

Assume now that for any x, € R, there exists a polynomial P, =P, €2,
such that

1
|P,,(x)|<clexp{njllog|x—z|y(1)dz}, xeR,  (213)

and

1
IParafa > Coenp {n [ tog lxoja, ~ il drf, (214

where C, and C, are constants independent of » and x,. Then, on setting

§,(x) 1= P,(x/a,) exp(ny.),

we deduce (by (2.8) to (2.12)) that these S, satisfy (2.4) and (2.5).

Therefore, in order to prove Theorem 2.1, it remains to construct P, as
above. Such a construction was carried out in our paper [10, Theorem
9.1], for a large class of weights that includes W, a>1. For a <1, the
same method applies, but the details become more cumbersome. Here we
use another method that is due to V. Totik [13, 24] as it simplifies the
estimation.

THEOREM 2.3. Let do be a positive Borel measure on [a,b] <R that
satisfies

jda=1, (2.15)
and let

U(z) :=flog iz — 1| do(1) (2.16)
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be the corresponding potential. Define a=t,<t, < --- <t,=b by
1 .
fl dy=-i Li=(10,,,)0<j<n—1. (2.17)

Assume that the following conditions hold.

(a) Uniformly for 0<j<n—1,
'1/l~|1/+1|a (2.18)

where |I;| :=1,,,—1,
(b) There exists C, >0 such that uniformly for 0< j<n—1, xel,
|,\'—t[)
n| logl ——\do(t) = —C,. 2.19
L’ g< 7] da(t) | ( )

(c) There exists C, >0 such that uniformly for 0<k<n-—1,

] 2 2
%] | 5<Co (2.20)

Z 2+Z~—’_Ii————h

jskr—lltj-*l_tkl /zk+2\’j—’k+l

Then, given any x,€R, one can find a polynomial P,=P, P, that
satisfies

lP,,(.\f)l SC? exp(nUU(»\'))’ )CE[Rv (221)
and
[P, (x0)] 2 Fexp(nU° (xo)). (2.22)

The constant C, in (2.21) depends only on the constants C,, C, in (2.19),
(2.20) and on the constants implicit in the ~ relation (2.18).

Proof. Given xye R, we construct P, as lollows:

Case 1. xo¢[a,b] or xo=1¢; for some 0< j <n. Then define £, e, by
[ t=gydoy=0, o<j<n-1, (2.23)
l/

Case 1. 1 <xq<t;,,, for some 0<j,<n—1 Then define & by
(2.23), if j #j,. As to £, this can be chosen arbitrarily in /,, subject to the
restriction

xo— &l =510, (2.24)
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With the above choice of £;’s, define
n-1
P, (x):= H (x—¢&). (2.25)
j=0

We claim that this P, satisfies (2.21) and (2.22). The proof of (2.22) is
particularly simple. We have by (2.17) and (2.24),

nU?(x)—log |P,(x)]

1 do(n)
X —

n-—-1
n| log
j§0 j’;
n—1

: Y L(x). (2.26)

7

t
<

i

The function log |x,— 1| is concave as a function of t on /,, provided
xo¢(t,,1,,,) Thus

v

1—¢,
é]'_"r(l’

tel,.

log |xq— 1] <log |xy— i,‘ + J

Therefore the choice (2.23) of ¢, ensures that L;(xo)<0. If x,e (1,1, ,),
we have by (2.24),

Xo—1t
9 <3, tel

io*

xXg—¢;

so that L, (x) <log 3. This proves (2.22).

To prove (2.21), we need to show (see (2.26)) that

-1
Y L(x)2—-C  xeR (2.27)

i=0

Since the left-hand side of (2.26) represents a function that is harmonic in
C\[a, b], it suffices to establish (2.27) for x € [a, b]. So, let x € I;. for some
0 < j* < n—I. First, note that the condition (2.19) implies that every single
term in (2.27) is bounded below by — . In particular, we have

Li(x)z-C,j=j* j*L Lo (2.28)
Next, for j#j*, j* + [, we obtain from condition (2.18) that

g —1t

x—¢;

>-p>-1, 1el,
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with some 0 < ff <1, independent of xe [, and of j, n. Therefore, we may

write for te 1,
25_,—[_ 1 2<§j_v,)z‘
x—=¢ 2(1-B)Y\x—¢

If j is also different from j,, we obtain by (2.23) that

‘fj’_t

x—=¢

—f’=log 1+

J

x
1
og |-

n & —t 2
RARATT Iy 4,<—r—6,-> @t

n ”j] ?
> Ta0-py ( “)d"(”

).

231 —ﬁ)z(
provided j#/*; j* + 1; j,. Thus (recall (2.28)),

remains to show that
2
(L) <c
Jrsiie v YT

Since xe /., &, e[, this inequality follows from condition (2.20). |

in order to prove (2.27), it

Theorem 2.3 gives us the desired relations (2.13), (2.14) provided we can
show that the measure do(t)= u(t)dr satisfies conditions (a)-(c) of
Theorem 2.3. From (2.6), we easily deduce that

(1} For a>1,

u(ty~J1 =1, l1] < 1.
(i1) For a=1,
0 {,/1—[2, i<l <l
# ~

log 1/]4], O0<|t<i

(ii1) ForO<ux<l,

ut)~/1=0, i<l <, (2.29)

) ~ >t O< |t <3 (2.30)

We shall only consider the case (iii) and provide the reader a few details.
Note that u is an even function. Assume, for definiteness, that » is even.
Then ¢,,, =0 and (2.30) yields

J—=n/2 v .
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provided
jed,={jj>n/2 and 0 <1, <4}
Therefore, uniformly for j, j+ 1 €J,, we have
L/t~ (2.31)
This relation combined with

Cilpl eyl < u=

I

%s C, 1| 12!
yields
n VLI~ je (2.32)
and therefore (by (2.31)),
L)~ 1150 for jj+1eJ,.

Also,

ool ~ Mz i~ 02 (2.33)
Thus the condition (2.18) holds for je J, U {n/2}. Similar reasoning (based

on (2.29)) shows that uniformly for j, j+1eJ,:={j:j>n/2, 1 >1, 25},
we have

1—¢2
~—1—’Jt—;—‘~1; n T2 ~1. (2.34)
Y
Also,
i~y sl ~n 20 (2.35)

Thus, (2.18) holds for je J,. Since J;, J, overiap and since u is even, we
have verified (2.18). Next, we turn to (2.19). For j=n/2, xel,,, we have

X—t

£n2]
= 1 1) dt
nlmnl e iiat
{421 xX—t . . . .
>an log IYI | 2 dt {since the integrand is negative)
0 ”ni2

{
= Cnll,al" | log|y—sis™ " ds
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by the substitution x=y |1, (0< y <1), t=51,,|. The last integral is
uniformly bounded for 0< y <1. Taking into account (2.33), we have
shown that (2.19) holds for j=n/2. For je J,, we obtain

xX—1

17

i

xX—t
;]

Y

dt

J

nj log pu(r)de = Cnrs- ‘J log
1 {

1
>cniz 1) | tog s d,

by the substitution x — ¢t =5 |7,|. Applying {2.32), we obtain (2.19) uniformly
for jeJ,. The case jeJ, is treated similarly, by using (2.34) and (2.35).

Finally, we prove (2.20). This is equivalent (in view of (2.31), (2.32),
(2.34), (2.35)) to

1 dt
R
n s (E—2,)7 ult)

Assume, for example, that & =n/2. Then the last integral is bounded from
above by

=0(1).

1".1;2 dt +1J“ dt
Aot ' nlin 2 120

Similarly, using (2.32)-(2.35), we obtain (2.20) uniformly in 0<k<n—1.
This completes the proof.

3. Uprer BOUNDS FOR CHRISTOFFEL FUNCTIONS, |

In this section, we obtain upper bounds for the Christoffel function
in(W2, x), for |x| € [ea,, a,(1 + Ln—*7?)], for any fixed ¢€ (0, 1) and then
deduce Theorem 1.1(a) for this range. The proof follows very closely those
in [10], but we present the details for the reader’s convenience. First, we
recall an infinitefinite range inequality from [107:

LemMA 3.1, Let O< p<ov and K>0. Then there exist N, C>0 such
that for n>2N and Pe Z,,

HPWazHL,,(R)<C ”PWuHLf,[le$a,,(l7Kn’2“‘3)l' (3-1)

Proof. This is a special case of Theorem 1.8 in [10]. |
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Proof of Theorem 1.1(a) for the range |x| € [ea,, a,(1 + Ln "*3)]. First,
note that by Lemma 3.1, there exists C > 0 such that

PW N ey SCIPW, M 11 -, Pe#,nz1l

ap]?

Hence for any m<n—1,

LWL Wi <C it [T (WL () dif(PW, ) (x)
Pe# g --dp

<C [, in IPW.Il., m 1PW,1(x)]?

€ Fo 1

x inf J P2(1) di/P? (x)

Ped m - ay
= C2 [/:‘m. x(Wz’ .\')/Wi, x)]z an/“n m+l(u’ x/an )»

where u =1 is the Legendre weight on [ —1, 1]. By standard estimates for
the Christoffel function of the Legendre weight [ 18, pp. 107-108],

C 2 2
i.,(u,x)<7max{l—lx[,/*‘}*"“, xe[—1,1].

Since

4

R
Alu x)=1] 3 pjlu,x)
lj=0

I

is a decreasing function of x e (1, o0), the above estimate also holds outside
[ —1,1]. Hence, we obtain for xe R,

}"n(Wi’ —Y)/Wi(-") < Cl [im. =4 (Was x)/Wa(x):Iz

a, RN
x;:—’—nmax{l——;;—,m} . (32)

We distinguish two ranges of x:

(1) ea,<|x|<a,, i, 23, In this case, we choose an integer m such
that

Ay 1 < |X! <am'
Then for n large enough,

Cnsm<n(l —n=?3), (3.3)
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where C of course depends on &. Recalling that «, is given by (1.5), we see
that

and hence,

a, |1 (1 |’CJ)2 ﬂ(l Ix[\ 12
nl—min a, n a, )

This ~ relation, (3.2), and Theorem 2.1 show that for eu, <|x| <

an(l 7211’13)’

12
Axwiwiynscg%<1—g5 . (3.4)

n
(1) @, 2 2 <|x]<a,(1+Ln *7). In this case, we choose
mi=n—{n'?*>,

where (x) denotes the greatest integer < x. Then, we see that

1] o
- <O Py,
n o (n_m)Z
so that
x| 1 i a, 23
- U <o, — < Can (35
n—m max{ a,’ (n—m)? < (n—m)? 4falt (3:5)
Finally,

Ix|/a,, < (a,/a,)(1+Ln??)<1+Kn *7,
some K> 0. Then (3.2), (3.5), and Theorem 2.1 show that

A (W2 x)Wix)< Csayn 23,
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for da,q_am-23, < |x| < a,(1 + Ln"*?). Together with (3.4), this last
inequality shows that

N 2 an 2 2i3 i‘\" 12
AW x)SCo—Wi(x){ max<n “°) 1 —— ,
n a,
for ea, < |x| € a,(1 + Ln~"*). The corresponding lower bound for
A,(W?2, x) is a special case of Theorem 1.7 in [10]. |

4. UrPER BOUNDS FOR CHRISTOFFEL FUNCTIONS, 11

In this section, we obtain upper bounds for 4, (W2, x) using the method
of Freud, Giroux, and Rahman [7], for the range (x| <ea,, some suitable
¢>0, and hence deduce Theorem 1.1(a) for this range. We note that an
alternative derivation of this upper bound may be based on the
asymptotics for Christoffel functions given in Theorem 1.3 for [11, p. 185],
more specifically (I.15) there. Although this would shorten this section,
we follow the method of [7], since this avoids using the “deep” results
in [117].

We use the canonical product

P,(z):=[] (1+zn'"), zeC, 0<f<], (4.1)

n=1

and the asymptotics for Pg in [1]. It is known [1, p. 497, Thm. 17 that

AR S £(z
log Py(z) s p- 2]0g- 2Blog(2n)+c‘(_), (4.2)

where £(z) — 0 as z — oo, uniformly in the sector {z:|argz|<n—d}, for
any fixed de (0, m). We shall set

T — 1/x
= ; 43
& <sin m/'Z) ’ (43

and for 0 <x <1, we set

H,(z):=(1+(1,2)%) P2,({1,2)?)

=(1+ (1,20 T[] (1 + (r,z/n"*)*)% (4.4)

n=1

Lemma 4.1. H, is an even entire function with non-negative Maclaurin
series coefficients, such that

H,(x) Wi(x)~1, xeR 4.5)
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Proof. For large |x|, the ~ in (4.5) follows easily from (4.2). For small
|x|, this follows as H, and W2 are positive and continuous in R.

LeMMmA 42, Let O<a< 1. Let S,,€ P, denote the mth partial sum of the
Maclaurin series of

G(z2) := P,n((1,2)°). (4.6)
Then
{a) S, is an even polynomial with non-negative Maclaurin series
coefficients.
(b) Let €>0. Then there exists 6 >0 such that for m>=1,
|G(z) =S, () <e™,  fzi<(om)'™, (4.7)
and
1S, (x)/G(x)— 1] <3, Ix[ < (m)'= (4.8)
(c) Let o=1. There exists n>0 such that for m= 1, the only zeros of

S,.(z) inside the rectangle with vertices +a{nm>"*+ i{ym>"* lie on the
imaginary axis. These zeros are simple, and have the form =+ iv;/t,, where

vie(j—1J+1), 1<j<<{ymd'™ (4.9)

Proof. {(a) This is immediate.

(b) This is an easy consequence of the contour integral error formula
for G-S§,,, and (4.1), (4.2).

(c) We use Rouché’s theorem, applied to G(z) and S,,(z). To this
end, we find suitable lower bounds for [G(z)]. Suppose that />0 and

T2 =x+i(l+ 1) xeR.

Note the inequality
H+CP2 1 -(m 22 (eC

Then for j> 1, this inequality yields

292 [ 4 122
[P0
J J
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So for such z, we see that

Le Iyl
aeraf (2w (222

27 172/ 1732/
SR SERRINE
J J

j=1

=:”]'”2.

o

I

j=20+1

Here, as / — o, we can write
2

H,=exp(z log

i=1

=exp<l[£: log

>exp(—C,/).

I _[l + 1/21:|2’°‘ >
i
l 2/
| _H dx+omD
X

Next,

ES

172=exp< Y log

-I5T)
j=21+1 J

o / 172/x
>exp(—2 Y l:tz] >>exp(—C21).

Jj=2l+1

Here we have used the inequality

log(1 — x) = —2x, xe(0, 3]
So

1G(2)] = exp( — Cs1), =Tl+——— xeR

Moreover, using (4.2), we see that

1y )ia \ 1ia
|G(2)| = C, z=o(l+“) +i£—,,}‘l<<l+—> .

Let .#, denote the rectangular contour with vertices

N (e
LD Uy
rl T}

235
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We have shown that
[G(z)] Zexp(—C5l), z€A,.

Let 0 <e<exp(—C;) and 3 be as in (b) of this lemma. Choose # >0 so
small that if /1= {ym >, #,< {z:|z| < (ém)"*}. Then by (b) of this lemma,
for z inside and on %,

G(z)= S, (z)| €e"<e <o < |G(z).

By Rouché’s theorem, S,,(z) has the same total multiplicity of zeros inside
#, as G, Now G has its zeros in #,, all simple, precisely, at +i"*/1,,
1 < j </l We showed above that

(—U-/‘G(z’(gi}—f))zexp(—cglx 0<jl<l

x£

(For j=0, and [ large enough, this is trivial.) As ¢ <exp(— C,), we have

(—l)fsm(i((—fiiﬁl—f))>o, o<1l </

So, §,, has zeros + iy;/t,, where for 1</ </, yie[j—5j+3] |

Next, we consider the polynomial

Q,(z) = (1+(1,2)) S, _,(z)e A, 5, n>l. (4.10)

Lemma 43, (a) 3 C,, C,>0 such that

sup Q. (x) Wi(x)<Cy, nzl; (4.11)
xeR
O, (x) Wi(x)~1, (x| (Cyn)* n=1. (4.12)

(b) We can write
Q. <a,,%[:4—%]):/1,,(2)/1,,(1/2'), zeC\{0}, (4.13)

where h,€ #, _1, h,(0)> 0 and has all its zeros in {z - \z| > 1}. Moreover, h,
has double zeros at

, ERVERES
il’5k=ii<i"—+\/l+<~r—y—"~> ) I<k<s (), (4.14)

T:l a’l (la!l
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where the {y,} are as in the previous lemma (for m=n~—2); h, has simple

zeros at
1 [ 1\?
+ 1+( ) ) (4.15)
a Tyly

atn

iiéo= ii<

All other zeros of h, lie in {z:\z| 21+ C}, some C independent of n.

Proof. (a) This follows easily from (4.5), (4.8), and (4.10).
(b) We note that for z=e¢"

Q. <an [% (: + %)]) =Q,(a,cos §)>0.

Then the decomposition (4.13) is well known [23, p. 3]. We see that

1 1 ,
a3 :+; = tiy, /1,

is equivalent to (for |z| > 1)

iE, = -_H< Y | /1+< . > )
1,4, 1,4

xtn

ty
Ii
I+

It is easily seen that the double zero of Q, leads to a double zero of 4,,.
Similarly, we may discuss the simple zeros of @, at +i/z,.
Finally, the map

1 1 [Ty 4
w:5 -] z=w4 ywi—1

maps circles with centre 0 in the z-plane onto ellipses with foct at +1 in
the w-plane. For suitable ¢ large enough, we can fit an ellipse with foci at
+ 1 inside the rectangle with vertices at +a{(nn)>'*/a,+i{yn)>"*/a,, and
having the same intercepts on the real and imaginary axes. Here

nn>'*fa, = C > 0.

As the only zeros of Q,(a,[$(z+ 1/z)]) inside this ellipse are the simple/
double zeros listed above, all other zeros outside this ellipse correspond to
zeros of h, in {z:|z| 21+ C}, with C >0 independent of n. |}

Proof of Theorem 1.1(a) for the range |x| <ea,. Now by the infinite—
finite range inequality Lemma 3.1, and then by Lemma 4.3, we have for
[l < (Cym) ™

640:80,2-8
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;Ln+ ](W§5 ’()/Wi(’()

n

<Cinf [ (PW,) (1) dif(PW,)? (x)

Pet g,

ap

<Cinf [P0 Q, () d/(P(x) 0, (x)

Pet#hv g,
. 1 3
< C,a, inf j RE(1)(1 —12) 172
Re 1

xQ, (a,t) dij(R*(x/a,) Q' (x))
=C4an/~“n+l(wnax/an) Qn(x)s (416)
where

w,(x):=(1-x*)""2 0, (a,x). (4.17)

Recall the definition of 4, in the previous lemma. It is known [23, p. 322;
7, p.363] that if

X/ua,=cos ¢, $e[0,n]; z=e", (4.18)

then

At w,, x)(1—x3)"2w,(x)
=n+3—Re(zh, (2)/h,(2))+ (2sin ) "' Im(z*" " h,(2)/h,(2))
=n—Re(zh,(z)/h,(z))+ O(1), (4.19)

for |x|/a, <31, say. We now estimate the second term in the right-hand side
of (4.19). We can write (recall (4.14), (4.15))

{nny
ho(z)=c(z* = (i&)*) T] (22— (i&,)*) g.(2),

j=1

where g, is a monic polynomial of degree <n with all its zeros in
{z:]z] 214 C}. Let us suppose that in (4.18),

¢e[0, g]
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so that x > 0. We see that

—zhy(2)/h.(z) = —z[~_i§ MRS ]
z 0o < 0

<and 1 1 1
—2z Z l:;—ifj+2+i€jj|—z Z _ié,'

j=1 |:,|>1+C:
{nn) 1 1

=-2: ¥* [———— — ]+0(n).
_E:o i, z+Ii;

uniformly for such x. Here and in the sequel # means that the term for
j =0 is multiplied by }. Here

1 1 * sind— 1 Csind 1
Re {-2[ — o —— }}= . fm.¢ s+ $ S".W 5
z—if;, z+Ii; 1-28;sing+ & 1+2¢sing+¢;

g sing— 1
=t 4 0(1),
1—2{,51n¢5-}-§,2+ (1)

as sin ¢ 2 0. So

am sin ¢ — 1
Re{ —zh), (z)/h, ()} =2 Y JELL
}

=0

SLTE L Ak MY
i —2g,smgre O

J

=2singy +26ing— 1) +0(n), (4.20)

where
S O B
S 1=2sing + &)
<y, 1
Now

1 —sin ¢ ~ 0052 ¢ — (x/an)Z ~ (x/nl,v‘z)z_

Also, since

(wH+J1+w)—1~w, we(—1, 1),

we have (see (4.9), (4.14))

v, AN i3
&1~ ~(i> C <

1,4, \#
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The ~ holds uniformly in j and n. Further, by (4.15),

. 1 (1)"“
Co—1~—~{-] .
a, n

Then

) <»1n># Cvj_l
2= ,/:Zb (&,— 1)’ +2¢,(1 —sing)

@ ym'
& G ()2

~

1ix

L nn u
~n uJ\ —— du
0 u2,1+x*2 4

where x* :=max{1, x}. The substitution u = (x*)*s yields

) 1/x

\)

nn/(x
1/ E R rlJ‘ - d
~ R X =T, as
Zl ( ) 0 52“1 +1

nl"“z {log(n/’r*)s x= 1’

(). wel, (4.21)

if 0 < x <ea,, some small enough &> 0. Similarly,
Z <rm># 1
2 FZO (&,—1)"+2&,(1 —sin ¢)
<nnp 1

= Uln )27 4 (x/nV*)?

~

2/ an 1 d
~n'*) —S———dx
o w4 (x*)?

u it r s
— n2,¢a (x* )1 -2 f

e~ ()2 4.22
Ny R (4.22)

So combining (4.20), (4.21), and (4.22), we have for 0 < x <eq,,,

Re{—zh;(z)/mz)}>Zl—2(§—) Y, +0(n)

log(n/x*), a=1

> 1/
> Cin {(x*)““, x<1

}— Cy(x*)*+ O(n)

log(n/x*), a=1,
>
/C}an{(x*)g¥1’ a<l,
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if ¢ is small enough. Substituting this estimate into (4.19) gives

log(n/x*), a=1

7'[,{’;: 1 (M’n, x/a,,) Qr;l(’\—) 2 Caa" {()C*)z 1’ < 1

Finally, (4.16) gives for xe [0, ¢a, ]

(log (n/x*))~!,  a=1,

)"n+l(Wizx)/Wi(x)<C5 {(Y*)'#I o<1

The corresponding lower bound is a special case of Theorem 1.7

in [10].

5. ZEROS OF ORTHOGONAL POLYNOMIALS

We begin with the
Proof of Corollary 1.2(a). We use the well known formula [6]

X,,= sup j xP(x) Wﬁ(x)dx/]t

Pedy, 2"~ -
P=0

P(x) W2i(x)dx,

which is an easy consequence of the Gauss quadrature formula. Then

o€

a,—x\,= inf (@, — x) P(x) Wg(x)dx/r P(x) W2(x) dx.
G o

Since a,, for W2 is a, for W,, we can use Lemma 3.1 to deduce that

a,—x,<C _inf f (a,—x) P(x) Wi(x)dx/j“" Plx) W2(x) dx.
AR ~a

(5.1)
Now we set
m = (n'7/25,
and

P(x)i=4,'5, (W2 x)I (a,'x),

“n—2m

where /,,, is the fundamental polynomial of Lagrange interpolation of
degree m for interpolation at the zeros of the Chebyshev polynomial



242 LEVIN AND LUBINSKY

T,,(x), corresponding to the largest zero of 7,,(x). Note that by the first
part of Theorem 1.1,

A";J Zm(WZ’ X} Wi(’() ~ An(x)‘ ]’
for |x| <a,, since (cf. (1.5))
an/anf m= 1+ O(nizy“’})'

Then we obtain from (5.1) and this estimate,

1 1
ay=x, <Ciay [ (1=5) 13,00 4, @) dsf| 13,(5) 4, (a,5) ds
-1 _
(5.2)

Now it is known that for some C, and C, (see, for example, [10, p. 531])

C
() S == a0I<C,se[-1L1;m>1.
m*|s — x¥,|
1 %* 2
l]m(S)ZE’ lS—-\”l,,,(Sczm

Here x¥, :=cos(n/2m) denotes the largest zero of 7, (x). We turn to the
estimation of the integrals in (5.2). We write for £ =0, 1,

f (1=5)< 14 (s) A, (a,s)ds
i

152 xp o Cym 2 X, + Cym ™2 1
-1 1/2 I 2 Ay + Com 2

Xy -~ Oyt

x (1—=s5)“13 (s) A4, (a,s)ds

1im

i

:11+12+]3+I4.
The estimates for /,,, and (1.7), (1.8) readily yield
I, <Cym ®n' Y logn;
. .Xi'm—sz‘z )
12<C4m*8n'” "’“j |S—x’|km‘m4(1—5)k+l“'2ds
1/2

(recall that n=*? ~m~?)
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1
<Com *n' U [ w e xR du

Cym~1?
w3 ™ :
S Cen' Vrm j w i w+ 1) 12 gy
&}
g, -2k -3
<C7nl l‘Sl"n k .

Next,

| y ,rl‘m+(‘2m’~ P 12
13~n’““J (1= s+ 12 gs

- - -2
Xy - Cam

-1y — /2 -1/ -2k -3
~l’11 11(m 2)k+3 =n] lxm k .

Finally, we similarly deduce that
]4 < Csnl — ls‘txmAZk; 3.

So, combining these estimates, we have shown that for k=0, 1,

Im

1
f (1—s) 1t () A (a,s)ds~n' = Vom= %2,
1

Then from (5.2), we obtain

~2
a,—x1,< Coa,m *~a,n= >

For the converse inequality, we note that if K> 0 is large enough, then
for n large enough and Pe #,, we have

RW2) (x) de s | |RW2 (x) dx.

J‘l.rlza,,(l+l(n*1€‘3) |} Sdnll + Kn~¥3)

This follows directly from Theorem 1.8 in [10, p. 469] and (7.14), (10.6) in
[10, p. 486, p. 5137]. Hence for Pe %, _,, with P20,

[7 Ta1 4 Kn ) —x(PW2)x) dx

.
1
2_

2\ <anlt + Kkn 23y

=0

{a,(1+ Kn=*3)—x](PW })(x)dx

Then

a,(1+Kn?")—x,,

= inf [ [an(l+an2«"3)-,r](ow)(,r)dx/f (PW2)(x) dx
Pi«;?mo—l - -G
1

=0.
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Proof of Corollary 1.2(b). Let H, be the entire function defined at (4.4)
and recall (4.5). Also, define the Christoffel numbers

- . 2 .
Ajn = ']v:(W;u xjrz)a 1 <J S h.

Now we use the Posse-Markov-Stieltjes inequalities in the form given in
[8 p.89]): For2<,/<n—1,

1
)‘jllH:x('\"jH)=—2_[ z )‘anz(xkn)_ Z )'ana(xkn)}

ko lxgnl < |1, nl k2 [ Xkn| < |
1 Nj-1n Niv i
= - H, (1) Wi(t)dt
Z[J‘/l.rx j \'/*l.n} 1( ) 1( )
=J H, (1) W2(1) dr. (5.3)
Xj4lon

Moreover, we similarly obtain

;t/'anz(x/n) + )"/+ I,nHa( (xj+ l.n)

1
=§': Z 'i‘ana('\‘kn)'_ Z llk"Hx(xk")]

ko Xknl < iXi-1al ko lxknl < 141 al
1 Xin cYitla
> _ _ 2
/ZUW J/M"]H,(r) W2(1) de
=j' "OH () W) dt. (5.4)
Y+loa

Then (4.5), (5.3), and (5.4) yield
AW xS CUX 1 — X 1)
and
AW x0) + A5 o WX 00 2 ol — X540 )
Then Theorem 1.1 enables us to conclude that
Xion— X022 Cad,(x;,)

and

X=X 1 n S Ca A, () + 4,06, 10 (5.5)
The proof will be complete if we can show that uniformly for 2< j<n—1,

An(xin)'\'An(xile,n)' (56)



ORTHOGONAL POLYNOMIALS 245

Now, if x;,;,20, and 0<x,,<a,/2, then for 0<a <1, (1.7) and (5.5)
give

1 g 1 +xm < 1 + C4 An(xjn) + An(xj-i» ],n)
l+xi+l.n 1+xj+l.n
1+xjn

<C5+C4(] +x_/'n) *

1 + xj+ 1.n

Then (5.6) follows. If a =1, (1.7) and (5.5} show that

x_,'n - xj+ lLon < C(J’

and then again, we obtain (5.6).
Next, if x;,, ,20, and @,/2<x, <a,(1 —n ),
1 _'\’[-Fl.llr'/all X — X4 1n

1< R =
I—x in 1y, an( I— x[rlfarr’

1
=1 +0(—1(1 —x,»,,/a,,)“>=0(1).
'
On the other hand if x, 2 a,(1 —n~ ¥, then (5.5) and Corollary 1.2(a)
yield
1—.’('j+].r1< ]_i’ﬁ+
a, | a

X X

i T e

a

" n

1 X - 1.2
—2:3 _ 243 RN
<Con? +C7;max n ‘},l—~’—a—ﬂ

"

—23
L Cgn™ =",

We have thus shown that, for x,,>a,/2,

max {n’ 231 —M} ~ max {n"z""’, 1 —‘—\’—t—lLl} (5.7)

a a,

H

Hence we have (5.6) uniformly in j and # such that x,,, , > 0. The proof
of (5.6) for the remaining cases is similar. |

6. BounDS FOR ORTHOGONAL POLYNOMIALS

In this section, we prove Corollaries 1.3 and 1.4. Our method for finding
upper bounds for orthogonal polynomials is similar to that in [10], but we
have been unable to provide complete results as in [10] because of the
difficulty of estimating a certain function.
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We shall need the Christoffel-Darboux formula
n—1

K (x,t):=K, (W2, x.1):=3 pi(x)p,(1)

J=0

=AI"n~lpu(x)pnfl([)_pn—l(x)pn(’, (61)

.)’n xX—1

(Recall that we abbreviate p,(x)=p,(WZ, x).) From this it follows by
setting x =1 =x,, that

- 1 }' 1
A/” = ’:’ p:r(xin) pn 1 ('\’/n ) (62)
I'n

We define, as in [10, 15], with Q(x) :=|x|*
”Q (x)=Q'(1)

Axy=2 Bt [ prey W d
Y K xX—1
=227 p20) W) Ot 1), (63)
Vn Y0
where if x, 1>0,
A __.\‘Q’(x)——tQ’(r)_ X —r*
Qlx, 1) := o =0 PERpEY (6.4)

It is known that [15, Thm, 3,2]
p:l(xjn):An(xjn)pn—](xjn) (65)
and hence (6.2) becomes

’y n —

P = A (X P (X) (6.6)

in

Estimation of 4, (x) plays a major role:

LEmMma 6.1.  Uniformly for nz1 and 0 < x < 2a,,

min{.x, «,} dy
At | (P WY e+ [ (p WP (e
Y 0 min{x, ap}
(6.7)
Moreover,
% -2 ‘/yﬂ* 1 x—2
Clan SAH(X)/, $C2X . (68)

/ ”n
Proof. 1t is readily seen that Q(x, 1) defined by (6.4) satisfies

O(x, t)~max{s, x}* 2 uniformly for 1, xe(0, o). (6.9)
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Then we see that for x € (0, 24, ],

dp 5 " min{x, ay}
J, (P2 (0 Qe i~ xm 2 | (Pa W) (1)
0 )
" w2t tar (6.10)
min! x, ay}

Note that a lower bound for the last right-hand side is
(20,7 [T (WP i~y [ (p W (0 di=a 2,
0 — o

in view of the evenness of (p,W,)? and the infinite-finite range inequality
Lemma 3.1. Next,

Fd

[ (w00 ndi~[ " (p, W) ()¢ Tdr<a; .
Then (6.7) follows from (6.3), (6.10), and this last inequality. Finally, (6.8)
is immediate. §

Proof of Corollary 1.4. First note the following consequence of the
Christoffel-Darboux formula:

2

pi(x) = Klzz(xs -\‘kn)(x—-xkn)z/[)nv l Pu-1 (xkn):l .
i

]
n

Then the Cauchy-Schwarz inequality and (6.6) show that

I A 2
P <, 02y el | B v |

=i, (x) [A(r)?——] (X = xg,). (6.11)

! i

Now if x20 and x,, is the zero of p,(x) closest to x, then by Corollary
1.2 and (5.6), we have

(X = X4a)? S Cy A7 (X)) < C A7 ().

Together with Theorem 1.1(a) and Corollary 1.2, this gives

{

PLX) W) < Cad, (x) [A,,(xk,,y,/ ] (6.12)

tn

< Cad,(x) x5, 7, (6.13)

by (6.8). Fix ¢ (0, 1). We consider two ranges of x:
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I. xe[ea,, 3a,]. Here from (1.7),
A (x)~xt 3
so {6.13) becomes
(P W2 ()< Csjx~a, ',
as required.

1. xella,,a,]. Here from (1.8) and (6.13), we obtain

x 2

(P W) (X)SCen'™ "max{n " 1—|x|/a,} "?d*
< Cra, 'max{n 1 —|xl/a,} " |

Remark. Let 0<a< 1, Note that if xe [0, ¢a,] and we choose x,,, to be
the closest zero of p, on the right of x, we have x,, ~ | + x because of the
spacing (1.13) of the zeros. Then (6.13) becomes

(P, W) (X)SCiA, (XN +x)° 2< /{14 x), xe[0,2a,] (6.14)

For a =1, (6.13) similarly becomes

’, 1 l 1
(p, W, (x)<Cy (Iog = ) ( + x) , xe[0,¢a,]. (6.15)
1+x log n

At least for x =1, we can improve (6.15) a little:

Proof of Corollary 1.5. Let (0, 1) and define
]l"('\’) :: a”"r/}(p” Wl )2 (x)'

From (6.7), we obtain for x < a,/2 (recall that a = 1),

{ ay
{ -
A, (x) | ==

in

X tyi2
<C, [x "'a,',"'J h,(t)t /’dt+a,j'J h(tyt ' Fde
O x

[ (p.,Wl)ztt)r“dt]

Upi2

< Cz [X la lxl i ”hn H Ly [0, ayi2] + a:; lx A th ” L, [0, 2] + a,; 1]

»n

< C3an ! (.Y -r th ” Ly {0, a,/2] + 1 )
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Then we obtain from (6.12), if we choose x,, to the right of x, that for
x<a,/2,

n 7!
h,(x)<Cy [IOg m:l (Al 2, 1o, any T+ x")
1
<§ 1A, e, ro.an2yt a,/f,

if xe[0,ea,], and ¢ is smali enough. Then
LNy [0, san) S % 1,0 ., [0, 421t af:.
Recall, from our bounds in Corollary 1.4, that
Ul 2, o anan < Csth.
Then we deduce that
Waull e, 0. cany S S L0 e T Ceal,
and hence that

B
(W) (x)< Cra, " (i) . xel0¢a,].

Since > 0 is arbitrary, we deduce that given ¢ >0,
(p. W) (x)< Cga, 'n’, xela, ', ea,]
To fill in the interval [0, a, '], we use the bound
IpaWillL, 2 < Cylogn,

which is an easy consequence of the Christoffel function estimates of
Theorem 1.1. Moreover, we need the Markov inequality [20, 9],

| p. Wy “L,,(R;gcm lognip, W, HL,(R;<C11 (log ’1)3 %
Then, given xe [0, a, '], we deduce that for some {e[x, a, '],

palx)y=p.a; ) +p,(ENx—a, " y=0(a, '?n’)+ O(log n)*? - O(a, ")

=O(a, '*n’),
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if & is small enough. We have shown that for any given § >0,
12 Wil to,eary < Crad,, “Zn°, (6.16)
Also, our upper bound in Corollary 1.4 gives
[p, W l(x)< Cya, ' *n", (x| € (ea,, a,(1 —n *3)].
The infinite-finite range inequality Lemma 3.1 gives
12, W10, )< Craa, n'e. (6.17)

In the other direction, we use (6.5), (6.6), which give

‘”})n 1

/ntj:ll Wz(x_/n) = |:An(xjn)/ ¥

1
] (P W0 ) (x30)

/)’ 1 !
- [A,,(x,,,) / —}—] (r W) (x))

Then applying our estimates of Theorem 1.1 and Lemma 6.1 gives for
X, 2 €y,

(P W) (x3))? ~a, " max{n ™2, 1—|x,|/a,}'". (6.18)

(Recall that a,~n.) Applying the Markov—-Bernstein inequality Theorem
1.3 in [9, p. 1067] gives

P W) ()l < Crsmax{n 221~ [x,l/a,} 2 I p, Wil o, (w)-
Combining this with (6.18), setting j=1, and using Corollary 1.2(a) give
1/6

— 172
” anI nL‘,,JlR)2 Cl()an { n

Together with (6.17), this gives the result. J

Proof of Corollary 1.3. First, we remark that proceeding exactly as
before (6.18) gives for 0<u <1, and x,, >za,,

jn =

| P W) =22 (P W, (0]
n n

~ an/ 172 max {n 72“‘"3’ 1 - |x/‘n ‘/an } - ]““‘4' (619)
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Now it i1s known [12] that

ne

so from (6.8},

fo

A () ~ai ' ~nja,

r this range of j. Then (6.5) gives

a, ’
lpn 1 Wa“xjn) ~7; Ipn Waz l(x/'n)a

and this completes the proof of the corollary. [
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