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Let W,(x):=exp(-!x!'), XEIR, :x>0. For :x<:;I, we obtain upper and lower
bounds for the ChristofTel functions for the weight W; over the whole Mhaskar
Rahmanov-SafT interval, and deduce inequalities for spacing of zeros of orthogonal
polynomials for W;. Then we deduce bounds for orthogonal polynomials for the
weight W;. These results complement recent results of the authors treating a large
class of weights including W;, :x> I. ,en 1995 Academic Press. Inc.

1. INTRODUCTION AND RESULTS

Let W 2 := e- 2Q, where Q: Il;£ -> Il;£ is even, continuous, and of "smooth
polynomial growth" at infinity, Such a weight is often called a Freud weight
[19], and perhaps the archetypal example is

W,(x) :=exp( -Ixl'), Q( > 0, ( 1.1 )

Corresponding to the weight W 2
, we can define orthonormal polynomials

satisfying

p,,(x) := p,,( W 2
, x) = 'Y"x" + 1'" >0, n~O,

m,n~O.
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Recently, the authors [10] established bounds for p,,( W 2
, x) for a class

of Freud weights that includes W;, a> I. The purpose of this paper is to
establish complementary results for the case a ~ 1. Our methods are similar
to those in [10], but additional technical difficulties arise. Consequently,
we have decided to restrict ourselves to the weights W;, though the
methods can treat more general Freud weights.

Here, as in [10], estimates for the Christoffel function playa crucial role.
Recall that if :~, denotes the class of polynomials of degree ~ n, then

).,,(W 2,x):= inf fer (PWf(t)dt/p 2 (x)
PE:~--l - 'X.;

(1.2)

in I

= 1/ L p}(W2
, x).

, i~O

(1.3)

(1.4 )u>o.

See [19] for a survey of the importance of Christoffel functions.
To state our results, we need the Mhaskar-Rahmanov-Saff number au

[16,17], the positive root of the equation

U=~fl autQ'(aut)dt/~,
n 0

For the weight W,(x), we have Q(x) = Ixl>' and

n? 1, (1.5 )

where [16]
(1.6)

Throughout C, Cl> C2 , ... denote positive constants independent of 11, x,
and PEfY'". We use'" in the following sense: If {b/l}:~~o and {c,,}:~o are
sequences of non-zero real numbers, we write

b n '-" ('n'

if there exist C l' C2> 0 such that

Similar notation is used for functions and sequences of functions.
Given 0 < a ~ 1, and n? 1, we define a function A,,(x):= A/I(O:, x) as

follows: For Ixl ~ a,,/2, set

{
(1+IX!)I->,

A,,(x):= l/log[nll/(l + Ixl)],
a<1

a=l
(1.7)



and for Ixl ~ G n /2,
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(1.8 )

We remark that the breakpoint Gn /2 is just for definiteness: We could have
used (Jan for any 0 < (J < 1, as our breakpoint, since the ratio of the right
hand sides of (1.7), (1.8) ~ 1 in [ba,,, w n ] for any fixed 0 < b < £< 1.

Following is our result for Christoffel functions:

THEOREM 1.1. Let 0 < IX ~ 1 and L > O. Then uniformly for n ~ 1 and
Ixl ~ an (l + Ln - 2/3), we have

(1.9)

Moreover, there exists C> 0 such that for n ~ 1 and all x E JR,

(1.10)

Remarks. (a) The lower bound (1.10) was proved in [10]. We use
the method of [10] to prove the upper bound implicit in (1.9) for
Ixl E [w n , a n (1 +Ln- 23

)], any 0<£< I, but that method breaks down for
Ixl ~w". To prove the upper bounds for Ixl ~w", we use the method that
Freud, Giroux, and Rahman employed for 0( = 1 in [7]: They established
(1.9) forO( = 1 and the range Ixl ~ W,,, some £ > O.

(b) It is a well known consequence [2,5,20] of the indeterminacy of
the moment problem for IX < 1 that ;." (W~, x) does not decay to 0 as
n ->T:, or equivalently

~.

KJx) := L p;( W;, x) < oc.
j= 0

In fact, Theorem 1.1 implies that

uniformly for x E JR. (1.11 )

The order and type of the entire function KJx) have been investigated by
various authors; see, for example, [2, 3].

We can deduce results on the zeros of the orthonormal polynomial
Pn (W;, x), which we order as

640 XO 2-7
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COROLLARY 1.2. Let 0 < a. ~ I. Then there exists C I such that

(a) For n~ I,

(b) Uniformly for n ~ 2 and 2 ~ j ~ n - 1,

Xi·· I, n- Xi + I, n '" An(xin )·

(1.12)

(1.13 )

Remarks. (a) For a. a positive even integer, sharper asymptotics are
known for XI" [14].

(b) We can probably deduce a similar result for xi" - xi + I,,, with
additional work; see [4].

COROLLARY 1.3. Let 0< a. ~ 1 and e E (0, I). Then uniformly for n ~ I
and j such that Ixi " I~ w",

n l
/, IIp;,(W;, x;,,)1 W,(x;n)

'" Ip" _ d W 2, X;,,) I W (X;n)

'" n 1/\2a) max {n -2/" I - Ix;" J/a,,} 1/4. (1.14 )

The reason for our restriction Ixi ~ ea." is that we cannot obtain correct
upper bounds for a certain function A,,(x) for Ixl ~w,,; see Section 6.

COROLLARY 1.4. Let 0 < a. ~ I and e E (0, 1). Then for n ~ I and Ixl E

[Ea", a,,],

IP" (W;, x)1 WJx-) ~ Cn 112a) max {n - 2/3, I - lxi/a,,} 14. (1.15)

Remarks. (a) Again, the restrictions on the range of x in (1.15) arise
from our inability to investigate the behaviour of a certain function. Using
the asymptotics in [11, pp. 187, 209] for weights that are the reciprocals
of an entire function, and Korous type identities, we can obtain "correct"
upper bounds for p,,(W;, x) for Ixl ~a"n-I/3+b, any <»0. However, this
involves substantial effort, and does not provide bounds for the complete
range, so is omitted.

(b) E. A. Rahmanov [22] has informed the authors that he believes
asymptotics can be proved for p,,( W;, x) in [-(Ja", (Ja,,], any fixed
(J E (0, 1). Such asymptotics will imply

n ~ I.
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Together with Corollary 1.4, the methods in Section 6 or in [10] will give

n~ 1,

and

IIPn(W;,,) W,(· )IIL,IR)~an 1/2 n l/6, n~ 1.

At least for r:x. = 1, we can prove this:

COROLLARY 1.5.

L'2 + 1/6 n ~ 1. (1.l6 )

This paper is organised as follows: In Section 2, we discretise a potential,
and hence estimate a certain Lx Christoffel function. In Section 3,
we obtain upper bounds for i'/I( W;, x) for the range Ixl E

[£on' an (I + Ln -2/3)] and in Section 4, we obtain upper bounds for the
range Ixl ~ £0/1' thereby completing the proof of Theorem 1.1. In Section 5,
we prove Corollary 1.2 on the zeros of Pn ( W;, x), and in Section 6, we
prove Corollaries 1.3-1.5.

2. THE SUP-NORM CHRISTOFFEL FUNCTIONS

Given a weight W: IR -+ IR, we let

i. n. x (W, x):= inf IIPWII L, (!IdIPI(x),
PE~ __ I

n ~ I, x E IR, (2.1 )

denote the sup-norm Christoffel function for W. In this section, we obtain
the following result, which will be applied in the next section to derive
upper bounds for ordinary Christoffel functions:

THEOREM 2.1. Let r:x. > 0 and L > O. For n ~ 1, set

J~ := {x: Ixl ~ an (I + Ln 2i3)},

where a/l=a/l(W,) is defined by (1.5) and (1.6). Then

i'/I.x (W" x) ~ W,(x),

(2.2)

(2.3 )

uniformly for x E f" and n ~ 1.

Note that forr:x. > 1, Theorem 2.1 is a special case of Theorem 1.6 in
[10], so we concentrate on the case r:x. ~ 1. Obviously )'n.,£ ( W" x) ~
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W~(.x). Thus it suffices to construct, for any XoE /,,, a polynomial
S" = S", Xu E ;?J:" such that

(2.4 )

while

(2.5)

where eland c2 depend on IY., L, but not on n or Xu E J" (We may use
S"E~, instead of S"E'~,I' since a"_I/a,,= I +O(n I), by (1.5).)

First let us reformulate our task. We need some potential theory related
to W,:

LEMMA 2.2. Let C( > O.

(a) DefineforxE[-l,lJ\{O},

. 2 ._[ fl JT=? s'-lxl~
,u(x) .= 2:IY.A, J 0 ds.

n 0 I - s- S2 - x 2
(2.6)

Then

,u(X) > 0 in [- I, I] \ {0 } and r ,u(t) dt = 1.
- I

(2.7 )

(b) Define for z E 1[,

U(z):=rI log Iz- tl,u(t) dt- ).;llzl' + x"

where

2 I t~

x~ := - A.~ I f J1=? elt + log 2.
n 0 l-r

Then for X E [ - 1, 1],

U(x) = 0;

and

(2.8)

exp ( -nLI log Ix - t\ )1(t) dt) = W,(a"x) exp(nx,)· (2.10)

Furthermore,

U(X) ~ 0, X E IR, (2.11 )
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and
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InU(x)1 ~ C,

where /n is defined by (2.2) and C= C(L).

X E f,,, (2.12 )

Proof These statements are well known and appear (in various forms)
in [12, 16, 21 ]. For our purposes, a convenient reference is Lemma 7.1 in
[10], applied in the special case Q(x):= Ixl~ and R=an=(n/A,)l/~. (Note
that there is a missing minus sign in the exponential term in (7.11) in
[10]). I

Assume now that for any X o E IR, there exists a polynomial Pit = Pit. Xo E .~,

such that

and

XE IR, (2.13)

(2.14)

where C 1 and C2 are constants independent of nand X o' Then, on setting

we deduce (by (2.8) to (2.12)) that these Sn satisfy (2.4) and (2.5).
Therefore, in order to prove Theorem 2.1, it remains to construct Pn as

above. Such a construction was carried out in our paper [10, Theorem
9.1], for a large class of weights that includes W"" IX> 1. For IX ~ 1, the
same method applies, but the details become more cumbersome. Here we
use another method that is due to V. Totik [13, 24] as it simplifies the
estimation.

THEOREM 2.3. Let da be a positive Borel measure on [a, b] c!R that
satisfies

and let

f da = 1,

U"(z):= flog Iz-tl d(J(t)

(2.15 )

(2.16 )
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be the corresponding potential. Define a = to < t 1 < ... < t n = b by

(2.17)

Assume that the following conditions hold:

(a) Uniformly for O,,;;i";;n-I,

(2.18)

where Ilil := tj +1- ti ·

(b) There exists C I > 0 such that uniformly for 0 ,,;; i ,,;; n - I, X E Ij ,

f (Ix-tl)n log -1-.- der(t)~ -C I ·
" 1,1

(c) There exists C 2 > 0 such that uniformly for 0,,;; k ,,;; n - I,

11,2 111 2
L / 2 + L j 2";; C2 •

i'i;k .. 2I ti+l-tk l j?k+2 Itj-tk +1 1

(2.19)

(2.20)

Then, given any X o E IR, one can find a polynomial P n = PlIo x" E &" that
satisfies

and

IP,,(x)!";; C, exp(nU""(x)), X E IR, (2.21 )

IP,,(xo)1 ~ ~ exp(nU"" (xo)). (2.22 )

The constant C3 in (2.21) depends only on the constants C 1 , C2 in (2.19),
(2.20) and on the constants implicit in the - relation (2.18).

Proof Given X o E IR, we construct P" as follows:

Case I. X o rf. [a, bJ or X o = tj for some 0";; i < n. Then define ~j E Ii by

f (t - ~j) dCT(t) = 0,

"
(2.23 )

Case II. tlo < X o < tiu + I for some 0,,;; io ,,;; n - 1. Then define ~l by
(2.23), if} '#io. As to ~j,,' this can be chosen arbitrarily in Ii'" subject to the
restriction

(2.24 )
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With the above choice of ~/s, define

,,-·1

P,,(x):= n (x-().
i~O
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(2.25 )

We claim that this P" satisfies (2.21) and (2.22). The proof of (2.22) is
particularly simple. We have by (2.17) and (2.24),

nU"(x)-log IP,,(x)1 =~t~ n {J log I.:-=-;J d(J(f)

,,-1

=: L L/(x).
i~O

(2.26)

The function log Ixo - fl IS concave as a function of f on 1/, provided
x o ¢: (f/, (/+ 1)' Thus

Therefore the choice (2.23) of ~j ensures that Lj(xo)';;; O. If X o E (flO' f jo + 1)'
we have by (2.24),

I
Xo - f I 3--,;;;,

X o - ~j

so that Lli,(x),;;;log3. This proves (2.22).
To prove (2.21), we need to show (see (2.26» that

" I

L L/(x)~-C,
j~O

X E IR. (2.27 )

Since the left-hand side of (2.26) represents a function that is harmonic in
C\[a, h], it suffices to establish (2.27) for XE [a, h]. So, let xEI/o for some
0,;;; j * ,;;; n - I. First, note that the condition (2.19) implies that every single
term in (2.27) is bounded below by - C l' In particular, we have

j* ± 1;.io· (2.28 )

Next, for j #- j *, j * ± I, we obtain from condition (2.18) that
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with some 0 < {i < 1, independent of x E Ij • and of j, n. Therefore, we may
write for t E I j ,

I I
x-til I ~j-tl ~j-t 1 (~j_t)2og -- = og 1+-- ;>--'--- --
X-~j X-~j ?'x-~j 2(1-{J)2 X-~j .

If j is also different from jn, we obtain by (2.23) that

n f (~j- t )2
L/(x)~ 2(l-{Jf I, X-~j df1(t)

~ 2(l:{J)2rJxl~I~J2df1(t)

1 (1Ijl)2
=-2(1-{J)2 X-~j ,

providedj,ij*;j*± I;jn. Thus (recall (2.28», in order to prove (2.27), it
remains to show that

Since x E I j ., ~j E I j , this inequality follows from condition (2.20). I
Theorem 2.3 gives us the desired relations (2.13), (2.14) provided we can

show that the measure da(t) = J1(t) dt satisfies conditions (a)-(c) of
Theorem 2.3. From (2.6), we easily deduce that

(i) For rt.> I,

J1(t) - j!=?, It I < 1.

(ii) Forrt.= I,

{j!=?, !~ltl<1.

J1.(t) - log 111tl, O<ltl~!.

(iii) For 0<:1< 1,

J1(t) - j!=?, !~ltl<l, (2.29)

J1(t) -Iti"-l, 0<ltl<1· (2.30)

We shall only consider the case (iii) and provide the reader a few details.
Note that J1. is an even function. Assume, for definiteness, that n is even.
Then tnl2 = 0 and (2.30) yields

j-nl2 It1 a
--= /1-t.

n 0 J
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provided

jEll := {j :j> n/2 and 0 < tj~ ~}.

Therefore, uniformly for j, j + IE ll' we have

This relation combined with

yields

229

(2.31 )

(2.32 )

and therefore (by (2.31»),

IIi I - \I j + 1 I

Also,

for j,)+1EJ j •

(2.33 )

Thus the condition (2.18) holds for j Ell U {nI2}. Similar reasoning (based
on (2.29)) shows that uniformly for j, j+ 1E12 := {j :j>n/2, 1> tj ~ H,
we have

(2.34)

Also,

(2.35)

Thus, (2.18) holds for jE12. Since 1},12 overlap and since J1 is even, we
have verified (2.18). Next, we turn to (2.19). For j=nI2, xEln/2 , we have

f fl/n'21 jX-tl
n = n log ':--11, J1(t) dt

Ini1 0 ni21

fl
/
n21 \x-tj

~ en log -I-,,- t' - I dt
o 1"'21

(since the integrand is negative)
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~Cnt;

by the substitution x = Y IIn/2 I (0 < Y < 1), t = s 11m2 I· The last integral is
uniformly bounded for 0,,:; Y ,,:; 1. Taking into account (2.33), we have
shown that (2.19) holds for j = n12. For j Ell' we obtain

n r,lOg 1'~z/ll1(t)dt~ Cnt; I r, log I~~z/I dt

1 IIil r log lsi ds,
-I

by the substitution x - t = s IIjl. Applying (2.32), we obtain (2.19) uniformly
for jEll' The casejEl2 is treated similarly, by using (2.34) and (2.35).

Finally, we prove (2.20). This is equivalent (in view of (2.31), (2.32),
(2.34), (2.35)) to

Assume, for example, that k = n12. Then the last integral is bounded from
above by

1f1/2 dt 1fI dt- +- = 0(1)
n en 1/' t 2

• t a
I n 1/2 t 2 fi7 .

Similarly, using (2.32)-(2.35), we obtain (2.20) uniformly in O,,:;k":;n-1.
This completes the proof.

3. UPPER BOUNDS FOR CHRISTOFFEL FUNCTIONS, I

In this section, we obtain upper bounds for the Christoffel function
An(W;, x), for Ixl E [wn, af/(1 +Ln- 2

/
3 )J, for any fixed EE(O, I) and then

deduce Theorem 1.1 (a) for this range. The proof follows very closely those
in [10J, but we present the details for the reader's convenience. First, we
recall an infinite-finite range inequality from [10]:

LEMMA 3.1. Let 0 < p":; CJ) and K> O. Then there exist N, C > 0 such
that for n~N and PE~,

(3.1)

Proof. This is a special case of Theorem 1.8 in [10]. I
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Proof of Theorem 1.1 (a) for the range Ixl E [Wn, an (l + Ln 2/3)]. First,
note that by Lemma 3.1, there exists e> 0 such that

IIPW, II L,tRI::::::: e IIPW, Ilr.,r -an. an l'

Hence for any m:( n - 1,

),,,( W;, x)/W;(.\")::::::: e 2 inf rn

(PW, f (t) dt/(PW,)2 (x)
PE·1'f,--1 ~-an

:( e2 [ inf IIPW, Ill., lid IPW, l(x)]2
PE ·:?Jm-l

x inf j"" p 2(t) dt/P2(x)
P E ·111 m-- an

where u == I is the Legendre weight on [ - I, I l By standard estimates for
the Christoffel function of the Legendre weight [18, pp. 107-108],

Since

. ( ) e f I I -I 1+ 2 \ + 1/2I·r u, x :( I maxI -.X, J '

I J

)'I(U, x) = I L P7(U, x)
!~o

XE[-I,ll

is a decreasing function of x E (1, CfJ), the above estimate also holds outside
[ - I, I l Hence, we obtain for x E Ih£,

(3.2 )

We distinguish two ranges of x:

(I) tan::::::: Ixl :::::::a"tl 2" 23). In this case, we choose an integer m such
that

Then for n large enough,

en :( m ::::::: n( I - n - 2/3 ), (3.3 )
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where C of course depends on £. Recalling that an is given by (1.5), we see
that

1_1:1 ~ 1 _ am _ 1 _ m.
all an n

In particular, together with (3.3), this implies that

0/3 m Ixl. ~ 1--",·1 --,
n an

and hence,

an {I Ixl 1 }li2--max -- ----;:-
n-m all' (n-m)2

_ an I (1 _1:1) 112 ~ an (1 _1:1) 1i2

n 1- min all n an

This - relation, (3.2), and Theorem 2.1 show that for £all ~ Ixl ~

2 0 all ( IX 1) 1/2
)''1 ( w" x)/W~(x):::;C2 - 1-- .

n all

(II) anll 2'1 2'1:::; Ixl :::; an ( 1+ Ln 2
i 3). In this case, we choose

m :=n- (n li3
),

where (x) denotes the greatest integer :::; x. Then, we see that

(3.4 )

1 _1:1:::; C 1 n 2/3

an

so that

an {I Ixl 1 }112 C an C 2/3--max --, 2:::; 3 2:::; 4 an n
n-m an (n-m) (n-m)

Finally,

some K>O. Then (3.2), (3.5), and Theorem 2.1 show that

(3.5 )
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for a"(1_2,,-23) ~ Ixl ~ a,,(l + Ln 2/3). Together with (3.4), this last
inequality shows that

;'n( W;, x) ~ C6 :' W;(.-r) (max {n 2/3, I_I~~,I}) 12,

for W n ~ Ixl ~ an (l + Ln 3
). The corresponding lower bound for

J. n ( W;, x) is a special case of Theorem 1.7 in [10]. I

4. UPPER BOUNDS FOR CHRISTOFFEL FUNCTIONS, II

In this section, we obtain upper bounds for ;." (W;, x) using the method
of Freud, Giroux, and Rahman [7], for the range Ixl ~ £an' some suitable
[; > 0, and hence deduce Theorem 1.1 (a) for this range. We note that an
alternative derivation of this upper bound may be based on the
asymptotics for Christoffel functions given in Theorem 1.3 for [II, p. 185],
more specifically (1.15) there. Although this would shorten this section,
we follow the method of [7], since this avoids using the "deep" results
in [II].

We use the canonical product

PII(Z):= Il (l + z/n l
/II ),

11=1

ZEC, O<f3<I, (4.1 )

and the asymptotics for P II in [I]. It is known [I, p. 497, Thm. I] that

IT I I
log Pldz) = -.-f3 ZII - -log z - 2f3log(2n) + 6'(z), (4.2)

Sill n 2

where 8(z) -> °as z ->X, uniformly in the sector {z: larg zl < n - b}, for
any fixed <5 E (0, n). We shall set

( )

-li~

T~:= sin ::>:/2 .;

and for °< :>: ~ I, we set

T

= (I + (r,zn n (I + (r~z/nl/~)2)2.

1/=1

(4.3 )

(4.4 )

LEMMA 4.1. H, is an even entire function with non-negative Maclaurin
series coefficients, such that

X E IR. (4.5 )
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Proof For large lxi, the ~ in (4.5) follows easily from (4.2). For small
lxi, this follows as H~ and W; are positive and continuous in R I

LEMMA 4.2. Let 0 < a ~ 1. Let Sm E~" denote the mth partial sum of the
Maclaurin series of

(4.6 )

Then

(a) Sm is an even polynomial with non-negative Maclaurin series
coefficients.

(b) Let e > O. Then there exists b > 0 such that for m ~ 1,

and

IG(z)- Sm(z)1 ~em,

ISm(x)/G(x) -11 ~!,

Izl ~ (bm)li\ (4.7)

(4.8 )

(c) Let a ~ 1. There exists 17 > 0 such that for m ~ 1, the only zeros of
Sm (z) inside the rectangle v..'ith vertices ±(T< 17m) li~ ± i <11m) li~ lie 011 the
imaginary axis. These zeros are simple, and have the form ± (V)T~, where

~ (. 1 . I)Yi E ) - 2') + 2 , (4.9)

Proof (a) This is immediate.

(b) This is an easy consequence of the contour integral error formula
for G - Sm, and (4.1), (4.2).

(c) We use Rouche's theorem, applied to G(z) and Sm(z). To this
end, we find suitable lower bounds for IG(z )1. Suppose that I ~ 0 and

T~z=x+i(l+!)li~,

Note the inequality

XE IR.

Then for j ~ 1, this inequality yields
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So for such z, we see that

Here, as I->w, we can write

(
2/ I [1 + 1/2/J

2/'I)ill = exp I log 1- --.-'--
i = 1 111

~ exp( - CI/).

Next,

(
cc I [1+ IJ2/'I)il2=exp . I log 1- ~

1~2/+ I 1

(

c£ [/+ IJ2/')~exp -2. I ~ ~exp(-C2/).
} ~ 2/ + 1 .I

Here we have used the inequality
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log(1 - x) ~ -2x,

So

XE(O, n

x i(l + 1) 1/,
Z=-+ ,XE fR.

T, T,

Moreover, using (4.2), we see that

IG(z)1 ~ C,
(l+~)I'.y (1)1'z=a ~ +1-, 1)'1 ~ 1+-

T, T, 2

Let ;jf/ denote the rectangular contour with vertices

U+!)I' (l+!)I'
+a 2 +i 2
- T, - T,
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We have shown that

LEVIN AND LUBINSKY

IG(z)1 ~ exp( -C3 1), Z E 2ll,.

Let 0 < e< exp( - C3) and 0 be as in (b) of this lemma. Choose I] > 0 so
small that if I := <I]m), ;~, c {z : Iz[ :::::; (om)l/'}. Then by (b) of this lemma,
for z inside and on .'it"

IG(z) - Sm(z)1 :::::; em < e-
Cyn < e-c'J/ < IG(z)l.

By Rouche's theorem, S", (z) has the same total multiplicity of zeros inside
;'it, as G. Now G has its zeros in ;'it" all simple, precisely, at ± i/i'Ir"
I :::::; j :::::; I. We showed above that

(For j = 0, and I large enough, this is trivial.) As e < exp( - C3), we have

0:::::; iii :::::; I.

So, S", has zeros ± iJjr" where for 1 :::::; j :::::; I, YI E [j - ~,j + n I

Next, we consider the polynomial

LEMMA 4.3. (a) :J C I' C2> 0 such that

n ~ 1. (4.10)

sup Q,,(x) W;(.x-):::::; C 1 ,

'E il;

n ?:: 1; (4.11 )

Q,,(x) W;(x) -1,

(b) We can write

(4.12 )

ZEC\{O}, (4.13 )

where h/lEi!J,,_I' h,,(O»O and has all its zeros in {z: Izi > I}. Moreover, h/l
has double zeros at

(4.14 )
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where the {lk} are as in the previous lemma (for m = n - 2); h" has simple
zeros at

(4.15 )

All other zeros of h" lie in {z : Izi ): I + C}, some C independent of n.

Proof (a) This foHows easily from (4.5), (4.8), and (4.10).

(b) We note that for z = e/o,

Q" (a" [~(z + ~)J) = Q"(a,, cos 8) > O.

Then the decomposition (4.13) is weH known [23, p. 3]. We see that

a[! (z +!,)J = +iv IT"2 Z -.k ~

is equivalent to (for Izl > I)

It is easily seen that the double zero of Q" leads to a double zero of h".
Similarly, we may discuss the simple zeros of Q" at ± i/T 2 •

Finally, the map

I(I) /-
IV = 2" z +; ¢> Z = II' + V It,2 - 1

maps circles with centre 0 in the z-plane onto ellipses with foci at ± I in
the w-plane. For suitable (J large enough, we can fit an ellipse with foci at
± 1 inside the rectangle with vertices at ±a<'ln>li'/a"±i<YJn>li~/a,,,and
having the same intercepts on the real and imaginary axes. Here

As the only zeros of Q"(a,,U(z+ I/z)]) inside this ellipse are the simple/
double zeros listed above, all other zeros outside this ellipse correspond to
zeros of h" in {z: Izi ): I + C}, with C> 0 independent of n. I

Proof of Theorem l.l(a) for the range Ixl < £all' Now by the infinite
finite range inequality Lemma 3.1, and then by Lemma 4.3, we have for
Ixl :( (C1n)Ji'

640i80.2·g
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where
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~ C2 inf r" (PW,)2 (t) dt/(PW,)2 (X)
PE.~ -- tin

1

~ C4 a" inf f R 2(t)(l- t2
)-li

2
RE,'-?h 1

x Q,; 1 (a"t) dt/(R 2(x/a,.) Q; I (X))

\t'" (x) := (I - X
2

) 1.2 Q,; 1(a"x).

(4.16 )

(4.17)

Recall the definition of h" in the previous lemma. It is known [23, p. 322;
7, p.363] that if

then

x/a" = cos rjJ; rjJE[O,n]; (4.18)

= n + 1- Re(zh;, (z)/h" (z)) + (2 sin rjJ) - 1 Im(z2" + 1h" (z )/h" (z))

= n - Re(zh~ (z )/h" (z)) + O( 1), (4.19 )

for lxi/an ~ L say. We now estimate the second term in the right-hand side
of (4.19). We can write (recall (4.14), (4.15))

<~n>

h,,(z) = C(Z2 - (i(o)2) n (Z2 - (i(y)2 g,,(z),
i~ 1

where gn is a monic polynomial of degree < n with all its zeros in
{z: Izl ~ 1 + C}. Let us suppose that in (4.18),
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so that x ~ O. We see that
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<~n >[1 1 ] 1
-2z L --.+--. -z L --.

j~l Z-l~j Z+l~j l(jl~I+CZ-I~i

<~n > [1 1 ]
= -2z I# ~_ ". +-7-'.. + O(n),

1=0 ~ ll;j _+l~,

uniformly for such x. Here and in the sequel # means that the term for
j = 0 is multiplied by ~. Here

as sin ¢J ~ O. So

<~n > ~. ¢J 1
Re{-zh~(z)/hn(z)}=2 I# jsm - 2+ 0 (n)

j=O 1-2~jsin¢J+~j

= 2 sin ¢J L
I
+ 2(sin ¢J - 1) L2 + O(n), (4.20)

where

Now

Also, since

(w+~)-l~w,

we have (see (4.9), (4.14)

Yj (J) 1/>
~j-l~-~ - ,

r,an n

WE (-~, ~),

l«j«<l1n ).
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The holds uniformly in j and n. Further, by (4.15),

1 (I) 1/,
~o-l",-", - .

an n

Then

<I># ~j-l

i~O (ej -l)2+2ej (1-sint,6)

<fIn> (J/n)li'

~ j~l (J/nfi' + (x/n l
/')2

f
tltz Ul/:x

,......., n1,/x 2 2 du,
o u /, + x*

where x* :=max{l,x}. The substitution u=(x*)'s yields

~ n lh {IOg(n/x*),
(X*)'--I,

cx=l,

ex < 1,
(4.21 )

if 0 ~ x ~ W n , some small enough c; > O. Similarly,

<"n># 1

/~ (~j-l)2+2~j(l-sint,6)
<"n> 1

~ j~1 (J/n)2/' + (x/nIl> )2

~ n2/, f"n . 1 dx
o U2i'+(X*)2

f
"n/lx.)' ds,

= n2/, (x* y- 2 _ ... __ ~ n2,,(x* y --2
o S2,' + 1

So combining (4.20), (4.21), and (4.22), we have for O~x~wn,

(4.22)

>- C 1/, {IOg(n/x*),
~ In (*)'-1X ,

>. C a {IOg(n/x*),
;/" 3 n (x*)X- I,

ex = I}ex<1 -C2 (x*Y+O(n)

ex = I,

IX < I,
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if r; is small enough. Substituting this estimate into (4.19) gives
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-1 -1 >-: {IOg(n/X*),
7!A,,+ [(w", x/a,,) Q" (x) 7 C4 a" (x*)" I,

:x=1

:x < 1.

Finally, (4.16) gives for XE [0, ca,,]

• 2 0 {(log(n/x*))~-I, rx=l,
1,,,+ 1 (W" x)/W;(x) ~ Cs *)'_'

(x, IX < 1.

The corresponding lower bound IS a special case of Theorem 1.7
in [10]. I

5. ZEROS OF ORTHOGONAL POLYNOMIALS

We begin with the

Proof of Corollary 1.2(a). We use the well known formula [6]

Xl" = sup r:x. xP(x) W;(.\") dx/r:r P(x) W;(x) dx,
Pe ;¥:2n--2 - 'y..; - 'l_

p;>o

which is an easy consequence of the Gauss quadrature formula. Then

a,,-x[,,= i~f rx, (a,,-x)p(X)W;(X)dx/f'" P(x)W;(x)dx.
PE~n-2 -x _·x

p;>o

Since a2" for W; is a" for W" we can use Lemma 3.1 to deduce that

f
~ f~a,,-xI"~C inf (a,,-x)P(x) W;(x)dx/ Pix) W;(x)dx.

p E '~n - 2 -- (In -- an
p;>o

(5.1 )

Now we set

and

where 11m is the fundamental polynomial of Lagrange interpolation of
degree m for interpolation at the zeros of the Chebyshev polynomial
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Tm(x), corresponding to the largest zero of Tm(x). Note that by the first
part of Theorem 1.1,

for Ixl ~a,,, since (cr. (1.5))

Then we obtain from (5.1) and this estimate,

a"-xl"~Cla,,f (l-s)/im(s)A" l(a"s)ds/f lim(s)A" l(a"s)ds.
-I -I

(5.2)

Now it is known that for some C I and C 2 (see, for example, [10, p. 531])

C1
I/'m(s)l~ 21 .* I;m S-X 1m

I/lm(s)1 ~ C 1, SE [ -I, 1]; m ~ 1.

Here xtm :=cos(n/2m) denotes the largest zero of Tm(x). We turn to the
estimation of the integrals in (5.2). We write for k = 0, 1,

The estimates for 11m and (1.7), (1.8) readily yield

(recall that n 2/3 ..... m - 2 )
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I

~C5m-Hnl--I/~f, ,U- 4(U+ 1-;rfml+I/2du
(2m --"

~C6nl I/'m 2k 3f X11'-4(H'+I)k+I/2dw
C2

~C7nl-l/'m-2k-3,

Next,

f
X im + C.,m-2

13~nl-li' x. c'm_
1

(I-S)k+I/2 ds
1m 2

~nl 1/'(m-2)k+3/2=nl-l/'m-2k-3.

Finally, we similarly deduce that

1
4
~ C8nl-I/~m--2k- 3.

So, combining these estimates, we have shown that for k = 0, 1,

fl (l-s)klim(s)A,;1(ans)ds~nll/'m-2k 3
-I

Then from (5.2), we obtain
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For the converse inequality, we note that if K> 0 is large enough, then
for n large enough and P E:J11", we have

f 2 1f 2IRW, I (x) dx ~ - IRW, I (x) dx.
Ixl;;' anO + Kn- 20 I 2 Ixl';; ani 1 + Kn-1Jj

This follows directly from Theorem 1.8 in [10, p. 469] and (7.14), (10.6) in
[10, p.486, p. 513]. Hence for PE ~n-2' with P ~ 0,

f"" [Gn(l + Kn -2/3) - X](PW,2)(X) dx- x;,

~-2If ' [a n(l+Kn- 2
/
3 )-x](PW;)(x)dx

Ixl';;an(l+Kn 2,3 J

~o.

Then

= P}~-2 rJx; [a n(1 +Kn - 2/3) - x ](PW;)(x) dx;fx,x (PW;)(x) dx
p;;,o

~o. I
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Proof of Corollary 1.2(b). Let H, be the entire function defined at (4.4)
and recall (4.5). Also, define the Christoffel numbers

Aj " := ).,,( W;, Xj,,), 1~j ~ n.

Now we use the Posse-Markov-Stieltjes inequalities in the form given in
[8, p. 89]: For 2~.i~n-l,

J.j"H,(Xj,,)=i[ I )'k"H,(Xk")- L ).k"Hx(Xk")]
k: jXknl < Ix,- I, III k: IXknl < IX;n!

~ [rl:,l~" -r:,I,:',,] H,(t) W~(t) dt

=fH" H,(t) W;(t) dt.
'(/-1 L n

Moreover, we similarly obtain

? ~ [r:,,, -rl:,I,~,,,] H, (t) W; (t) dt

= f''' Hx(t) W~(t) dt.
xJ + I, n

Then (4.5), (5.3), and (5.4) yield

and

Then Theorem 1.1 enables us to conclude that

and

(5.3 )

(5.4 )

(5.5)

The proof will be complete if we can show that uniformly for 2 ~ j ~ n - 1,

(5.6 )
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Now, if Xj+Ln~O, and O~Xjn~anI2, then for O<iX< 1, (1.7) and (5.5)
give

1 1+ x,,, 1 C A" (xj ,,) + A" (xj + I. ,,)
~ ~ + 4 --"---'--'c.:......._....::...:~.:.....:..:-=

1+xj +I." 1 +xj +l."

1+xj "
~ C5 + C4 ( 1+ x/,,) x -----'--

1+ x,+ L"

Then (5.6) follows. If C( = I, (1.7) and (5.5) show that

and then again, we obtain (5.6).
Next, ifxj+I."~O, and an/2~xj,,~a,,(l-n 2i3),

1~ I - xi + L ,,/a"
I-xi"/a,,

I + XI" - x, + 1. "

a" (I - x,,,/a,, I

(
1 .' -32)=1+0 ~(I-'\j,,/a,,) . =0(1).

On the other hand if X/" ~ a" (l - n - 2i3), then (5.5) and Corollary 1.2(a )
yield

I
I - x j + L "I ~ 11 _ x,,,I+ Xj" - x, + I. "

a" a" an

~ C 7n-23 + C 7 ~ max {n -2i3, I _ X';"I. ,,} - 12

~ C8 n- 23
.

We have thus shown that, for xj " ~ a,,/2,

Hence we have (5.6) uniformly inj and n such that X,+I.,,~O. The proof
of (5.6) for the remaining cases is similar. I

6. BOUNDS FOR ORTHOGONAL POLYNOMIALS

In this section, we prove Corollaries 1.3 and 104. Our method for finding
upper bounds for orthogonal polynomials is similar to that in [10],' but we
have been unable to provide complete results as in [10] because of the
difficulty of estimating a certain function.
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We shall need the Christoffi:'!-Darboux formula
Jl ,- 1

K,,(x, t) := Kn(W;, x, 1):= L Pj(x) Pj(t)
I~O

'I
III x-t

(6.1 )

(Recall that we abbreviate Pn(x) =P,,( W;, x).) From this it follows by
setting x = t = xin that

" I }' fI 1 ,
1'1" = --p,,(X/n ) P" 1 (XI")'

}'1j

We define, as in [10, 15J, with Q(x):= lxi',

A,,(x) := 2 }"~'" 1 [f. p~(t) W;(t) Q'('~~=;'(t) dt

"Ill I j" I. '). "I '"

=2-,,- p~(t)W~(t)Q(x,t)dt,
I r1 0

where if x, t :? 0,

, xQ'(x) - tQ'(t) x' _IX
Q(x, t) := '2 = 0: -,--,.

X· - t x- - t-

It is known that [15, Thm. 3,2]

p;, (x/,,) = An (xj ,,) Pn - I (x/n)

and hence (6.2) becomes

Estimation of An(x) plays a major role:

(6.2)

(6.3 )

(6.4 )

(6.5 )

(6.6)

LEMMA 6.1. Uniformly for n:? I and °< x ~ 2an,

An(xln- 1~ x~ ·2 fin!x. anI (Pn W,)2 (t) dt +rn
(Pn W~)2 (f) f,-2 df.

}'fI 0 min{x, an}

(6.7 )

Moreover,

C ' .2~A ( )/Yn- I ~C >.-2
·1 a" ~ n X I ~ 2 X .

I }'"

Proof It is readily seen that Q(x, t) defined by (6.4) satisfies

Q(x, t) ~ max {t, x}' 2 uniformly for I, x E (0, oc).

(6.8 )

(6.9 )
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Then we see that for x E (0, 2a,,],

rn

+ mm[x,a,: (p"W',)2(t)t' 2dt,

Note that a lower bound for the last right-hand side is
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(6,1 0)

in view of the evenness of (p" W,)2 and the infinite-finite range inequality
Lemma 3, I, Next,

JYe (p"W,)2(t)Q(x,t)dt~r (p"W,)2(t)t'-2dt::;;'a~-2,
an Un

Then (6,7) follows from (6,3), (6,10), and this last inequality, Finally, (6,8)
is immediate, I

Proof of Corollary 1,4, First note the following consequence of the
Christoffel-Darboux formula:

Then the Cauchy-Schwarz inequality and (6.6) show that

1[" J2" ),c' L( )) - I ()( )" I ( n - I ()p~ (x "'" I,,, X '" Xk" X - x kn -,I --Pn- I Xk"
I I'"

(6.11 )

Now if x~O and Xk" is the zero of p,,(x) closest to x, then by Corollary
L2 and (5.6), we have

Together with Theorem 1.1 (a) and Corollary 1.2, this gives

(6.12 )

(6.13 )

by (6.8). Fix E E (0, 1). We consider two ranges of x:
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1. X E [W,,, ~all]. Here from (1.7),

AII(X)·~·XI ,

so (6.13) becomes

as required.

II. XE Ua n , a,J. Here from (1.8) and (6.13), we obtain

(PIIW,)2(x)~C6nl/Y-lmax{n-2.\I-lxi/ali} 1·i2a~

~C7alllmax{n-2/3,1-lxl/an} 1/2. I

Remark. Let °< rx < 1. Note that if x E [0, m n ] and we choose Xkn to be
the closest zero of PII on the right of x, we have Xkn ~ I + x because of the
spacing (1.13) of the zeros. Then (6.13) becomes

(PII W,)2 (x):::; C l ;111(X)( 1+ xf 2:::; C2/( I + x),

For C1. = I, (6.13) similarly becomes

(
7l:11) 1 (I ) 1(PII W,)2(x):::;C3 10g-

1
- -I-+ x
+x ogn

At least for rx = 1, we can improve (6.15) a little:

Prool4 Corollary 1.5. Let f3 E (0, ~) and define

From (6.7), we obtain for x:::; a,J2 (recall thatrx = 1),

AII(xl(':, I

l til

XE[O,wlIl (6.14)

XE[O,W II ]. (6.15)

~CI[X la,;lfhll(t)f fldf+a,~lr"i2hll(f)tl-fldf

< C3 a ll I (.C fl lilt" II L, [0. a,,'2] + 1).
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Then we obtain from (6.12), if we choose Xkll to the right of x, that for
x ~ QIl/2,

1 p
~ 211111111 L, [0.<1,,/2] + a",

if x E [0, w,.], and <: is small enough. Then

Recall, from our bounds in Corollary lA, that

1111" IlL, [w". ""i2] ~ C5a~.

Then we deduce that

and hence that

X E [0, Will

Since p> 0 is arbitrary, we deduce that given <5 > 0,

XE [a,~ I, £a"l

To fill in the interval [0, a,~ I], we use the bound

which is an easy consequence of the Christoffel function estimates of
Theorem 1.1. Moreover, we need the Markov inequality [20, 9],

Then, given x E [0, a,~ I], we deduce that for some ¢ E [x, a,~ I],
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if 15 is small enough. We have shown that for any given 15 > 0,

(6.16 )

Also, our upper bound in Corollary 1.4 gives

The infinite-finite range inequality Lemma 3.1 gives

(6.17)

In the other direction, we use (6.5), (6.6), which give

A.j~ 1 W 2(Xjn ) = [ An(xjn )r;n \J-I (p~ WIl 2 (Xjn )

= [An(xjn)/}In,. IJ -1((Pn Wd' (Xjn ))2.
. }n

Then applying our estimates of Theorem 1.1 and Lemma 6.1 gives for
xln ~ ean,

(( W)'( ))2 -1 f -2/3 1 I 1/ }1/2Pn 1 X ln ~an maxtn '-Xjn an . (6.18 )

(Recall that an ~ n.) Applying the Markov-Bernstein inequality Theorem
1.3 in [9, p. 1067] gives

Combining this with (6.18), settingj= 1, and using Corollary 1.2(a) give

Together with (6.17), this gives the result. I

Proof of Corollary 1.3. First, we remark that proceeding exactly as
before (6.18) gives for O<IX~ 1, and xjn ~ean,
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Now it is known [12] that

}'" - 1
-- .......... an~

"III

so from (6.8),

for this range of j. Then (6.5) gives
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Ip"

and this completes the proof of the corollary. I
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